Vertex arboricity of toroidal graphs with a forbidden cycle

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vertex arboricity of toroidal graphs with a forbidden cycle

The vertex arboricity a(G) of a graph G is the minimum k such that V (G) can be partitioned into k sets where each set induces a forest. For a planar graph G, it is known that a(G) ≤ 3. In two recent papers, it was proved that planar graphs without k-cycles for some k ∈ {3, 4, 5, 6, 7} have vertex arboricity at most 2. For a toroidal graph G, it is known that a(G) ≤ 4. Let us consider the follo...

متن کامل

On list vertex 2-arboricity of toroidal graphs without cycles of specific length

The vertex arboricity $rho(G)$ of a graph $G$ is the minimum number of subsets into which the vertex set $V(G)$ can be partitioned so that each subset induces an acyclic graph‎. ‎A graph $G$ is called list vertex $k$-arborable if for any set $L(v)$ of cardinality at least $k$ at each vertex $v$ of $G$‎, ‎one can choose a color for each $v$ from its list $L(v)$ so that the subgraph induced by ev...

متن کامل

Equitable vertex arboricity of graphs

An equitable (t, k, d)-tree-coloring of a graph G is a coloring to vertices of G such that the sizes of any two color classes differ by at most one and the subgraph induced by each color class is a forest of maximum degree at most k and diameter at most d. The minimum t such that G has an equitable (t′, k, d)-tree-coloring for every t′ ≥ t is called the strong equitable (k, d)-vertex-arboricity...

متن کامل

on list vertex 2-arboricity of toroidal graphs without cycles of specific length

the vertex arboricity $rho(g)$ of a graph $g$ is the minimum number of subsets into which the vertex set $v(g)$ can be partitioned so that each subset induces an acyclic graph‎. ‎a graph $g$ is called list vertex $k$-arborable if for any set $l(v)$ of cardinality at least $k$ at each vertex $v$ of $g$‎, ‎one can choose a color for each $v$ from its list $l(v)$ so that the subgraph induced by ev...

متن کامل

A Note on Vertex Arboricity of Toroidal Graphs without 7-Cycles

The vertex arboricity ρ(G) of a graph G is the minimum number of subsets into which the vertex set V (G) can be partitioned so that each subset induces an acyclic graph. In this paper, it is shown that if G is a toroidal graph without 7-cycles, moreover, G contains no triangular and adjacent 4-cycles, then ρ(G) ≤ 2. Mathematics Subject Classification: Primary: 05C15; Secondary: 05C70

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2014

ISSN: 0012-365X

DOI: 10.1016/j.disc.2014.06.011